

Gold Footprint Continues to Expand at Northern Zone

Highlights

- 58.09 g/t Au within intercept of 5m at 12.27 g/t Au (NZAC062) new highest-grade interval to date from shallow drilling at Northern Zone
- The Northern Zone Gold Project is located only 25km east of Kalgoorlie
- All results have now been received for the August/September aircore drilling (AC) campaign
- Significant shallow gold intercepts include:
 - 7m at 3.90 g/t Au from 35m (NZAC055)
 - 4m at 3.97 g/t Au from 32m (NZAC061)
 - 4m at 6.92 g/t Au from 57m (NZAC061)
 - 5m at 12.27 g/t Au from 32m (NZAC062)
 (inc. 1m at 58.09 g/t Au from 34m)
 - 11m at 1.44 g/t Au from 29m (NZAC064)
 - 29m at 1.29 g/t Au from 54m (NZAC065)
 - 5m at 2.07 g/t Au from 46m (NZAC068)
 - 6m at 3.48 g/t Au from 73m (NZAC077)
 - 8m at 2.07 g/t Au from 50m (NZAC079)
- Targeted drilling continues to intersect the top of a large blind porphyry system, with widths now approaching 600m (see Figure 1)
- Further drilling is being designed in Leapfrog to follow up these latest high grade intercepts, and to target the expanding footprint of the mineralised porphyry
- Drilling continues to validate the geological model for the previously announced Exploration Target at the Northern Zone Gold Project of 200Mt - 250Mt at a grade of 0.4 g/t Au - 0.6 g/t Au for an Exploration Target of 2.5Moz - 4.8Moz of gold.¹

The Northern Zone Project has an Exploration Target of 200 to 250 million tonnes at a grade of 0.4 g/t to 0.6 g/t Au for an Exploration Target of 2.5 to 4.8 million oz of gold, as announced by RGL to the ASX on the 9 May 2023. The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The reader is advised that an Exploration Target is based on existing drill results and geological observations from drilling as well as interpretation of multiple available datasets. The Exploration Target is based on historical and Oracle drilling results. It uses data from 53 historical drillholes drilled between 1998 and 2012, and 7 drillholes drilled by Oracle in 2021. Refer to Appendix 1 of the announcement dated 9 May 2023 for further information with respect to these exploration results.

David Lenigas, Chairman of Riversgold, said: "This latest set of significant high-grade gold assays at Northern Zone continues to expand the gold mineralised footprint of the porphyry and confirm the presence of a significant gold system, located just east of Kalgoorlie, Western Australia. We are now developing plans to drill more shallow holes across the tenement to further explore the upper elevation of this blind porphyry, with modelling using Leapfrog software driving the planning. As the Australian dollar gold price approaches \$4,000, this gold project is fast becoming very interesting."

1

¹ RGL ASX announcement 9 May 2023 "Farm into Significant Porphyry Hosted Gold Project"

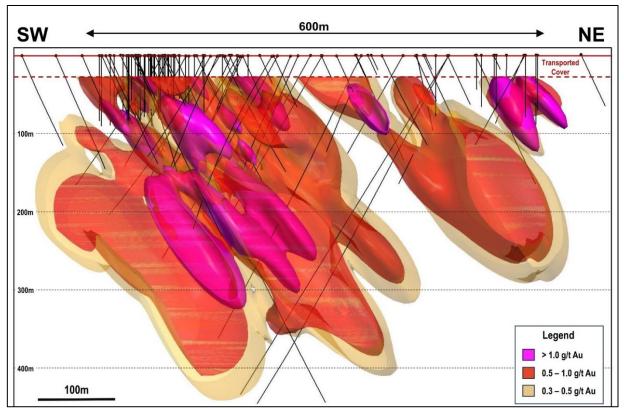


Figure 1: Cross—section of interpreted Au grade 3D model of Northern Zone, constrained to all existing drill holes that have been reported by Riversgold and to footnotes for all releases that contain drilling information. Refer to Figure 3 for the plan location of the section line.

Riversgold Limited (ASX: RGL, Riversgold or the Company) is pleased to announce that it has received all of the assay results from aircore (AC) drilling undertaken during Riversgold's third 2024 aircore program at the Northern Zone Intrusive Hosted Gold Project, located 25km east-south-east of the Kalgoorlie Super Pit in Western Australia (see Figure 2 for location).

Following on from our successful aircore programs completed in May and July 2024, Riversgold engaged drilling contractor, Australian Aircore Drilling (Mick Shorter), to undertake a third aircore program for a further 30 holes in late August and early September 2024. A further 1,826m of AC drilling was completed at Northern Zone in the most recent drilling campaign bringing the total number of metres drilled this year to 7,426m of AC drilling and 1,363m of reverse circulation drilling.

The AC holes were drilled using a blade to drilling refusal. The cuttings were logged by RGL geologists, and both the detailed logging and assays continue to show that a significant gold mineralisation event has taken place within the project area.

All historical and recent drilling data for a total of 189 drillholes at the Northern Zone Project has now been uploaded into Leapfrog software and has enabled the Company to generate a gold grade model (see **Figure 1**). Leapfrog will now be used to guide the next round of drilling, as we continue to build the Project.

Results from the recent 30-hole program have been received with significant intercepts including:

- 4m @ 0.63 g/t Au from 27m (NZAC081)
- 1m @ 1.04 g/t Au from 63m (NZAC081)
- 1m @ 0.3 g/t Au from 32m (NZAC082)
- 1m @ 0.32/t Au from 27m (NZAC083)
- 2m @ 0.94 g/t Au from 36m (NZAC083)
- 1m @ 1.95 g/t Au from 34m (NZAC060)
- 2m @ 1.22 g/t Au from 56m (NZAC060)
- 5m @ 1.5 g/t Au from 30m (NZAC054)
- 1m @ 0.33 g/t Au from 50m (NZAC054)
- 1m @ 0.72 g/t Au from 63m (NZAC054)

- 4m @ 1.05 g/t Au from 30m (NZAC080)
- 1m @ 0.91 g/t Au from 50m (NZAC080)
- 2m @ 2.72 g/t Au from 33m (NZAC056)
- 7m @ 3.9 g/t Au from 35m (NZAC055)
 (incl 1m at 6.84 g/t Au from 35m and 2m at 6.67 g/t Au from 37m)
- 1m @ 11.39 g/t Au from 31m (NZAC057)
- 1m @ 1.21 g/t Au from 32m (NZAC058)
- 4m @ 3.97 g/t Au from 32m (NZAC061)
 (incl 1m at 11.88 g/t Au from 32m)
- 4m @ 6.92 g/t Au from 57m (NZAC061)
 (incl 1m at 26.49 g/t Au from 57m)
- 5m @ 0.53 g/t Au from 75m (NZAC061)
- 5m @ 12.27 g/t Au from 32m (NZAC062)
 (incl 1m at 58.09 g/t Au from 34m)
- 7m @ 0.61 g/t Au from 33m (NZAC063)
- 11m @ 1.44 g/t Au from 29m (NZAC064)
 (incl 1m at 4.09 g/t Au from 32m)

- 29m @ 1.29 g/t Au from 30m (NZAC065)
 (incl 2m at 8.39 g/t Au from 33m and 1m at 6.07 g/t Au from 42m)
- 1m @ 1.09 g/t Au from 54m (NZAC066)
- 3m @ 0.52 g/t Au from 49m (NZAC067)
- 5m @ 2.07 g/t Au from 46m (NZAC068)
 (incl 1m at 8.74 g/t Au from 50m)
- 1m @ 1.42 g/t Au from 51m (NZAC069)
- 5m @ 1.17 g/t Au from 46m (NZAC070)
 (incl 1m at 5.55 g/t Au from 50m)
- 1m @ 1.05 g/t Au from 33m (NZAC072)
- 4m @ 1.75 g/t Au from 53m (NZAC072)
 (incl 1m at 5.48 g/t Au from 53m)
- 6m @ 3.48 g/t Au from 73m (NZAC077)
 (incl 1m at 16.03 g/t Au from 77m)
- 8m @ 2.07 g/t Au from 50m (NZAC079)
 (2m composites)
- 1m @ 1.09 g/t Au from 54m (NZAC085)

Significant shallow gold intercepts from the July AC program include²:

- 16m @ 4.69 g/t Au from 30m (NZAC033)
- 4m @ 6.9 g/t Au from 39m (NZAC029)
- 3m @ 3.32 g/t Au from 35m (NZAC030)
- 9m @ 1.2 g/t Au from 31m (NZAC048)

RC drilling targeted the shallower, up dip portion of the mineralised system, yielding several significant intercepts, including³:

- 18m @ 4.14g/t Au from 36m (NZRC001)
- 54m @ 0.38g/t Au from 158m (NZRC004)
- 14m @ 0.76g/t Au, from 226m (NZRC004)
- 15m @ 0.66g/t Au, from 160m (NZRC005)
- 8m @ 0.57g/t Au, from 221m (NZRC005)
- 9m @ 0.85g/t Au, from 176m (NZRC006)
- 22m @ 0.41g/t Au, from 272 metres to EOH (NZRC006)

Significant results from the maiden 2023 diamond drill traverse included⁴:

- 110m @ 0.6 g/t Au from 208m (RSDD02)
- 5m @ 3.03g/t Au from 221m
- 1m @ 4.77g/t Au from 248m
- 1m @ 5.26g/t Au from 262m
- 13m @ 1.29g/t Au from 274m
- 16.4m @ 0.45g/t Au from 83.6m (RSDD003)
- 13m @ 0.48g/t Au from 135m (RSDD003)
- 11m @ 0.49g/t Au from 197m (RSDD003)

- 25m @ 0.44g/t Au from 231m (RSDD003)
- 47m @ 0.48g/t Au from 216m (RSDD01)
- 8m @ 0.55g/t Au from 127m (RSDD02)
- 84m @ 0.42g/t Au from 315m (RSDD003)
- 4m @ 0.52g/t Au from 34m (RSDD04)
- 8m @ 0.43g/t Au from 77m (RSDD04)
- 4m @ 0.47g/t Au from 92m (RSDD04)

² RGL ASX announcement 27 August 2024 "Gold Grades Continue to Impress at Northern Zone"

³ RGL ASX announcement 11 July 2024 "Northern Zone Delivers Further High-Grade Gold Intercepts"

⁴ RGL ASX announcement 12 December 2023 "+100metre Wide Gold Intercepts at Northern Zone Project"

Significant results from 2021 and prior RC drilling include⁵:

- 154m @ 0.58g/t Au from 98m (210PRC004) incl 4m @ 5.39g/t Au from 182m
- 142m @ 0.42g/t Au from 62m (BNRC081)
- 330m @ 0.49 g/t Au from 30m (BNRC066) incl 54.79m @ 1.15g/t Au from 213m
- 117.7m @ 0.35g/t Au from 120.3m (BNRC034)
- 66m @ 0.89g/t Au from 30m (BNRC069)
- 38m @ 0.47g/t Au from 73m (BNRC084)
- 29m @ 1.84g/t Au from 33m (BNRC017)

The above results indicate that we are successfully continuing to probe the porphyry over an increasing footprint within the tenement. We will continue drilling to further our understanding of the project before proceeding with a Mineral Resource Estimate (MRE).

Mineralisation remains open in multiple directions, necessitating further drilling campaigns. Refer to Figure 3 for drilling locations, and Tables 1 to 3 for location and assay results.

Saturn Metals Limited has released a Preliminary Economic Assessment (PEA) on the Apollo Hill Gold Project which is located 175km due north of Northern Zone. With a resource estimate of 105Mt at 0.54g/t gold, totalling 1.839Moz⁶, this development serves as a benchmark for our aspirations at Northern Zone, albeit with the potential for Northern Zone to be an even larger project.

Conceptually, the Company draws parallels between Northern Zone and Saturn Metals' Apollo Hill Project, discerning similarities based on the PEA statement released by Saturn Metals (ASX 7 August 2023), which suggests the potential for a sizeable low-grade heap leach operation.

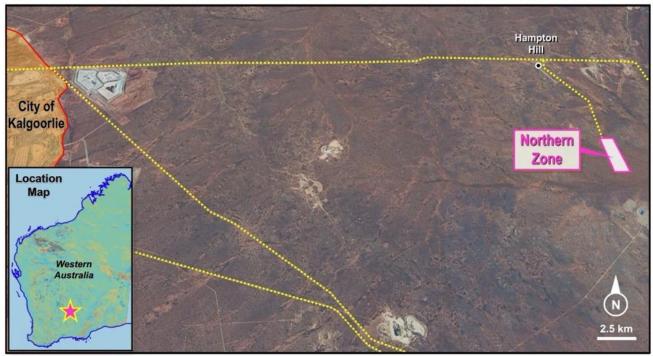


Figure 2: Northern Zone Project Map showing proximity to the Kalgoorlie "Super Pit".

⁵ RGL ASX announcement 12 December 2023 "+100metre Wide Gold Intercepts at Northern Zone Project".

⁶ STN ASX announcement 17 August 2023 "Updated Preliminary Economic Assessment".

-ENDS-

This announcement has been authorised for release by the Board of Riversgold Ltd.

For further information, please contact:

David Lenigas Ed Mead Executive Chairman Director

P: +44 (0) 7881825378 P: 0407 445351

E: <u>dlenigas@riversgold.com.au</u> E: <u>emead@riversgold.com.au</u>

Competent Person's Statement:

The information in this report that relates to exploration results and exploration targets is based on information compiled by Mr Edward Mead, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Mead is a director of Riversgold Ltd and a consultant to the company through Doraleda Pty Ltd. Mr Mead has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Mead consents to the inclusion of this information in the form and context in which it appears in this report.

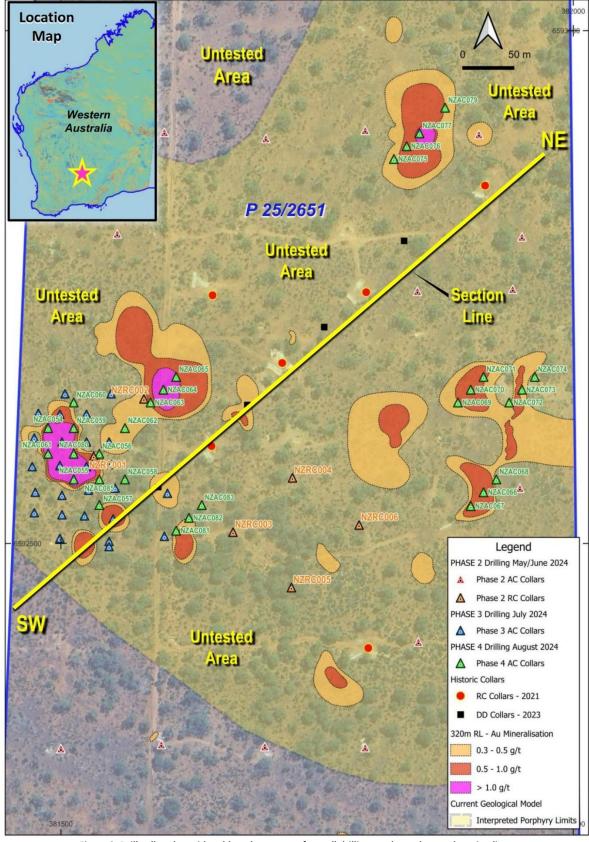


Figure 3: Drill collar plan with gold grade contours from all drilling results to date and section line.

APPENDIX 1: Drilling Information

Table 1: Northern Zone Significant Intercepts

Hole ID	From (m)	To (m)	Width (m)	Au g/t	Intercept
NZAC081	27	31	4	0.63	4m @ 0.63 g/t Au from 27m
NZAC081	63	64	1	1.04	1m @ 1.04 g/t Au from 63m
NZAC082	32	33	1	0.3	1m @ 0.3 g/t Au from 32m
NZAC083	27	28	1	0.32	1m @ 0.32/t Au from 27m
NZAC083	36	38	2	0.94	2m @ 0.94 g/t Au from 36m
NZAC060	34	35	1	1.95	1m @ 1.95 g/t Au from 34m
NZAC060	56	58	2	1.22	2m @ 1.22 g/t Au from 56m
NZAC054	30	35	5	1.5	5m @ 1.5 g/t Au from 30m
NZAC054	50	51	1	0.33	1m @ 0.33 g/t Au from 50m
NZAC054	63	64	1	0.72	1m @ 0.72 g/t Au from 63m
NZAC080	30	34	4	1.05	4m @ 1.05 g/t Au from 30m
NZAC080	50	51	1	0.91	1m @ 0.91 g/t Au from 50m
NZAC056	33	35	2	2.72	2m @ 2.72 g/t Au from 33m
NZAC059	No significant i	ntercepts report	ı		
NZAC055	35	42	7	3.9	7m @ 3.9g/t Au from 35m
incl	35	36	1	6.84	
incl	37	39	2	6.67	
NZAC057	31	32	1	11.39	1m @ 11.39g/t Au from 31m
NZAC058	32	33	1	1.21	1m @ 1.21g/t Au from 32m
NZAC061	32	36	4	3.97	4m @ 3.97g/t Au from 32m
incl	32	33	1	11.88	1m @ 11.88g/t Au from 32m
NZAC061	57	61	4	6.92	4m @ 6.92g/t Au from 57m
incl	57	58	1	26.49	2 2,
NZAC061	75	80	5	0.53	5m @ 0.53g/t Au from 75m
NZAC062	32	37	5	12.27	5m @ 12.27g/t Au from 32m
incl	34	35	1	58.09	311 @ 12.27g/ (Au 110111 32111
		40	7		7m @ 0.61a/h A.: from 22m
NZAC063	33	_		0.61	7m @ 0.61g/t Au from 33m
NZAC064	29	40	11	1.44	11m @ 1.44g/t Au from 29m
incl	32	33	1	4.09	
NZAC065	30	59	29	1.29	29m @ 1.29g/t Au from 30m
incl	33	35	2	8.39	
incl	42	43	1	6.07	
NZAC066	54	55	1	1.09	1m @ 1.09g/t Au from 54m
NZAC067	49	52	3	0.52	3m @ 0.52g/t Au from 49m
NZAC068	46	51	5	2.07	5m @ 2.07g/t Au from 46m
incl	50	51	1	8.74	
NZAC069	51	52	1	1.42	1m @ 1.42g/t Au from 51m
NZAC070	46	51	5	1.17	5m @ 1.17g/t Au from 46m
incl	50	51	1	5.55	
NZAC071	No significant i	intercepts report	ed		
NZAC072	33	34	1	1.05	1m @ 1.05g/t Au from 33m
NZAC072	53	57	4	1.75	4m @ 1.75g/t Au from 53m
incl	53	54	1	5.48	6
NZAC073				3.70	
NZAC073	No significant intercepts reported				
	_	No significant intercepts reported No significant intercepts reported			
NZAC075		1		2 12	6 0040 // 0 5
NZAC077	73	79	6	3.48	6m @ 3.48g/t Au from 73m
incl	77	78	1	16.03	
NZAC079	50	58	8	2.07	8m @ 2.07g/t Au from 50m (2m composites)
incl	50	52	2	8.03	
NZAC085	54	55	1	1.09	1m @ 1.09g/t Au from 54m

Table 2: Northern Zone Aircore Drill Collar Locations and information in GDA Zone 51J

Hole_ID	East	North	Depth	Dip	Elevation	Azimuth
NZAC054	381486	6592615	72	-90	356.97	0
NZAC054	381486	6592615	72	-90	356.97	0
NZAC055	381512.5	6592563	84	-90	356.676	0
NZAC056	381538	6592588	60	-90	356.61	0
NZAC057	381537.5	6592538	71	-90	356.49	0
NZAC058	381562.5	6592563	61	-90	356.469	0
NZAC059	381512	6592612	58	-90	356.9	0
NZAC060	381509	6592637	58	-90	356.96	0
NZAC061	381487.5	6592588	81	-90	356.917	0
NZAC062	381562.5	6592613	46	-90	356.653	0
NZAC063	381587.5	6592638	54	-90	356.659	0
NZAC064	381600	6592650	59	-90	356.523	0
NZAC065	381612.5	6592663	59	-90	356.55	0
NZAC066	381912.5	6592550	63	-90	354.915	0
NZAC067	381900	6592537	62	-90	354.891	0
NZAC068	381925	6592563	60	-90	354.93	0
NZAC069	381887.5	6592638	61	-90	355.287	0
NZAC070	381900	6592650	57	-90	355.327	0
NZAC071	381912.5	6592663	60	-90	355.316	0
NZAC072	381937.5	6592638	66	-90	355.16	0
NZAC073	381950	6592650	69	-90	354.987	0
NZAC074	381962.5	6592663	60	-90	354.921	0
NZAC075	381825	6592875	67	-90	356.38	0
NZAC076	381837.5	6592888	28	-90	356.358	0
NZAC077	381850	6592900	88	-90	356.392	0
NZAC079	381875	6592925	90	-90	356.455	0
NZAC080	381511	6592587	71	-90	356.79	0
NZAC081	381608	6592511	64	-90	356.04	0
NZAC082	381622	6592525	60	-90	356.02	0
NZAC083	381637	6592537	71	-90	356.02	0
NZAC085	381537.5	6592563	65	-90	356.571	0
NZAC056	381538	6592588	60	-90	356.61	0
NZAC059	381512	6592612	58	-90	356.90	0
NZAC060	381509	6592637	58	-90	356.96	0
NZAC080	381511	6592587	71	-90	356.79	0
NZAC081	381608	6592511	64	-90	356.04	0
NZAC082	381622	6592525	60	-90	356.02	0
NZAC083	381637	6592537	71	-90	356.02	0

Table 3: Northern Zone Aircore Results at > 0.3 g/t Au Grade Cutoff

Hole ID	From (m)	To (m)	Width (m)	Au Grade (g/t)
NZAC054	30	31	1	0.87
NZAC054	32	33	1	0.93
NZAC054	33	34	1	1.35
NZAC054	34	35	1	4.1
NZAC054	50	51	1	0.33
NZAC054	63	64	1	0.72
NZAC056	33	34	1	5.09
NZAC056	34	35	1	0.35
NZAC060	34	35	1	1.95
NZAC060	56	57	1	0.8
NZAC060	57	58	1	1.64
NZAC080	30	31	1	2.45

Hole ID	From (m)	To (m)	Width (m)	Au Grade (g/t)
NZAC080	32	33	1	0.35
NZAC080	33	34	1	1.2
NZAC080	50	51	1	0.91
NZAC081	27	28	1	0.72
NZAC081	28	29	1	0.77
NZAC081	29	30	1	0.41
NZAC081	33	34	1	0.32
NZAC081	63	64	1	1.04
NZAC082	32	33	1	0.37
NZAC083	27	28	1	0.32
NZAC083	36	37	1	1.5
NZAC083	37	38	1	0.37
NZAC055	35	36	1	6.84
NZAC055	36	37	1	2.1
NZAC055	37	38	1	7.41
NZAC055	38	39	1	5.92
NZAC055	39	40	1	0.71
NZAC055	40	41	1	1.23
NZAC055	41	42	1	3.12
NZAC057	31	32	1	11.39
NZAC061	32	33	1	11.88
NZAC061	33	34	1	0.33
NZAC061	34	35	1	3.47
NZAC061	57	58	1	26.49
NZAC061	58	59	1	0.56
NZAC061	60	61	1	0.36
NZAC061	75	76	1	1.08
NZAC061	79	80	1	1.17
NZAC062	33	34	1	0.5
NZAC062	34	35	1	58.09
NZAC062	35	36	1	2.04
NZAC062	36	37	1	0.51
NZAC063	33	34	1	1.53
NZAC063	34	35	1	0.41
NZAC063	35	36	1	1.79
NZAC064	29	30	1	1.02
NZAC064	30	31	1	2.4
NZAC064	31	32	1	2.59
NZAC064	32	33	1	4.09
NZAC064	33	34	1	1.77
NZAC064	34	35	1	0.96
NZAC064	35	36	1	1.01
NZAC064	36	37	1	0.88
NZAC064	37	38	1	0.55
NZAC064	39	40	1	0.54
NZAC065	30	31	1	0.48
NZAC065	31	32	1	0.96
NZAC065	32	33	1	2.72
NZAC065	33	34	1	11.71
NZAC065	34	35	1	5.07
NZAC065	35	36	1	0.65
NZAC065	37	38	1	1.08
NZAC065	42	43	1	6.07
NZAC065	43	44	1	1.44
NZAC065	44	45	1	0.79
NZAC065	51	52	1	2.47
NZAC065	55	52 56	1	1.62
	ł	59	1	
NZAC065	58	שכ	1	0.98

Hole ID	From (m)	To (m)	Width (m)	Au Grade (g/t)
NZAC066	44	45	1	0.37
NZAC066	49	50	1	0.38
NZAC066	54	55	1	1.09
NZAC067	49	50	1	0.32
NZAC067	50	51	1	0.97
NZAC068	41	42	1	0.4
NZAC068	46	47	1	1.05
NZAC068	48	49	1	0.48
NZAC068	50	51	1	8.74
NZAC069	51	52	1	1.42
NZAC070	33	34	1	0.62
NZAC070	50	51	1	5.55
NZAC071	51	52	1	0.81
NZAC072	33	34	1	1.05
NZAC072	53	54	1	5.48
NZAC072	56	57	1	1.5
NZAC073	26	27	1	0.57
NZAC073	50	51	1	0.95
NZAC074	30	31	1	0.63
NZAC074	41	42	1	0.3
NZCA074	50	51	1	0.58
NZAC077	45	46	1	0.32
NZAC077	74	75	1	0.81
NZAC077	76	77	1	0.7
NZAC077	77	78	1	16.03
NZAC077	78	79	1	3.03
NZAC079	12	18	6	0.33
NZAC079	50	52	2	8.03
NZAC079	66	68	2	0.46
NZAC085	54	55	1	1.09

APPENDIX 2: JORC INFORMATION

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at Northern Zone.

Section 1: Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Every metre drilled was placed on the ground. 6m composites were collected using a scoop method of sampling the coarse reject sample for the first 24m. 1m sampling using a rifle splitter was trialed on the clays, from 24m, with sampling deemed to create a high degree risk of smearing. The clays are not wet, but have a damp characteristic. A large metal scoop was used to sample between 70-90% of material from each metre drilled, to total between 2-3kg samples. Standard reference material, sample duplicates and blanks, were undertaken at 25m sample intervals. Samples were sent to the laboratory for crushing, splitting and analysis. Analysis was undertaken by Jinnings laboratories (Kalgoorlie) for gold assay by 50g fire assay.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Australian Aircore Drilling completed the program using a blade to refusal.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Drill recovery was routinely recorded via estimation of the comparative percentage of the volume of the sample pile by the company geologist. The sample recovery was deemed excellent for representative assays, with consistent sample recovery and no loss though the top of the cyclone. The cyclone was cleaned or checked every 3m.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All holes have been geologically logged for lithology, mineralisation and weathering. As well as whether dry, damp or wet. Logging is quantitative for presence of quartz veins. All other logging is qualitative. All metre intervals from 24m to end of hole were chip trayed and photographed. A brief description of each drilling sample was recorded and a permanent record has been collected and stored in chip trays for reference.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	1m sampling using a rifle splitter was trialed on the clays, from 24m, with sampling deemed to create a high degree risk of smearing. The clays are not wet, but have a damp characteristic. A large metal scoop was used to sample between 70-90% of material from each metre drilled, to total between 2-3kg samples. Standard reference material, sample duplicates and blanks, were undertaken at 25m sample intervals. Samples were sent to the laboratory for crushing, splitting and analysis. The use of fire assay with 50g charge for all AC drilling provides a level of confidence in the assay database. The sampling and assaying are considered representative of the in-situ material. The sample size of 2-3 kilograms is appropriate and representative of the grain size and mineralisation style of the deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Jinnings (Kalgoorlie) were used for all analysis of drill samples submitted by Riversgold. The laboratory techniques below are for all samples submitted to Jinnings and are considered appropriate for the style of mineralisation defined within the Northern Zone Project area: Samples above 3Kg were riffle split. Pulverise to 95% passing 75 microns 50-gram Fire Assay (FA50A) – Au Duplicates, Standards and Blanks were used for external laboratory checks by RGL.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Intercepts were reviewed by 2 company personnel.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	The collar position of each hole has been picked up by Spectrum Surveys (Kalgoorlie) using a DGPS.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The holes were drilled on a nominal East-West 12.5m spacing on traverses 12.5m apart, North- South.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The vertical drill holes were designed to test for supergene mineralisation or weathered primary ore zones and are believed to be unbiased based when interpretation is applied at modelling results.
Sample security	The measures taken to ensure sample security.	Company personnel delivered samples to Jinnings Kalgoorlie where they were submitted for assay.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data reviews will be conducted on completion of further drilling

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Northern Zone Project is comprised of one granted prospecting licence (P25/2651) which covers an area of 82 hectares, and is held in the name of Oracle Gold (WA) Pty Ltd. RGL are farming into the Tenement and have committed to spend \$600,000 in exploration expenditure on the tenement within the next two years. After Riversgold achieves 80% ownership, Oracle will be required to contribute pro-rata or dilute.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The majority of previous exploration in the area was by Northern Mining during 2007 to 2012 under the Blair North project, multiple small resource areas were identified at the George's Reward area to the south of P25/2651. Numerous gold intersections were recorded
Geology	Deposit type, geological setting and style of mineralisation.	The deposit is thought to be an Intrusion Related Gold System (IRGS) style of mineral deposit. Further drilling will better define the mineralisation style, and timing of the gold mineralisation event.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Tables and Figures within the body of the release.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Intersections are weighted average grades based on a 0.001 g/t Au cut-off with unlimited waste zones but with a targeted grade of above 2.0 g/t Au.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The diamond drilling program in 2023 confirmed the apparent widths of mineralisation as being perpendicular to foliation and veining. We believe the step out RC drilling to be the same as the diamond drilling. The true width of mineralisation is still to be fully ascertained. The Aircore drilling was vertical and not designed for true width, but was targeting supergene mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See body of the announcement for relevant diagrams and photos. Figure 1 was created using all data released to the ASX and can be found in news releases referred to in footnotes, with Leapfrog software, with Au grades composited to 9m intervals and then modelled using 1g/t Au, 0.5g/t Au and 0.3g/tAu. Orientation parameters for search ellipsoid of dip 55deg, dip azimuth 50deg, ellipsoid ratio of 3:1. Spheroidal interpolant.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	See body of the announcement.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Follow up phases of drilling to further test strike to be undertaken. Core from phase 1 to allow for further metallurgical studies.