

Northern Zone Gold Modelling and Project Update

Highlights:

- All drilling to date at Northern Zone, located 25km east of Kalgoorlie, has now been compiled and integrated into an updated Leapfrog gold mineralisation model (see Figure 1)
- The dynamic Leapfrog model will be used to inform and guide future drilling campaigns as we mature and grow the Northern Zone Project
- The continuation of the high-grade oxide zone within the 600m wide porphyry system has been further expanded and is open in multiple directions (see Figure 2)
- The results of these drill holes continue to confirm and enlarge the shallow gold mineralisation associated with the Northern Zone intrusive porphyry
- Mining License application to be submitted shortly
- Possible ore processing scenarios have been demonstrated by the recent success of Black Cat
 Syndicate Ltd, at their Myhree open pit, located only 7km to the north of Northern Zone

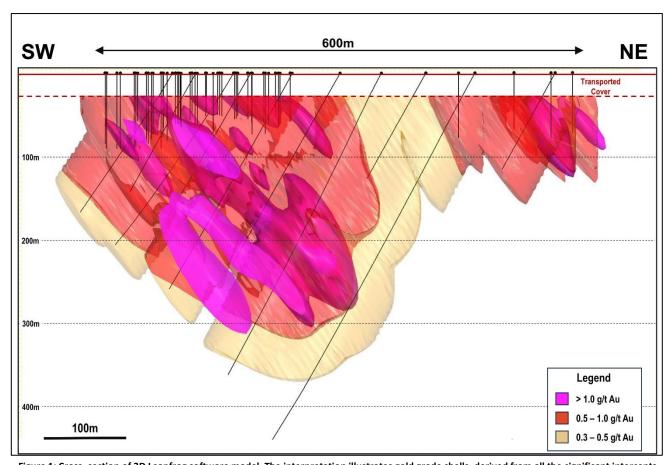


Figure 1: Cross-section of 3D Leapfrog software model. The interpretation illustrates gold grade shells, derived from all the significant intercepts reported to the ASX to date. The model is constrained via a 25m buffer to all the RGL/Oracle drill hole traces that have been drilled at Northern Zone since 2021. Refer to Figure 2 Drill collar plan for the location of the section line.

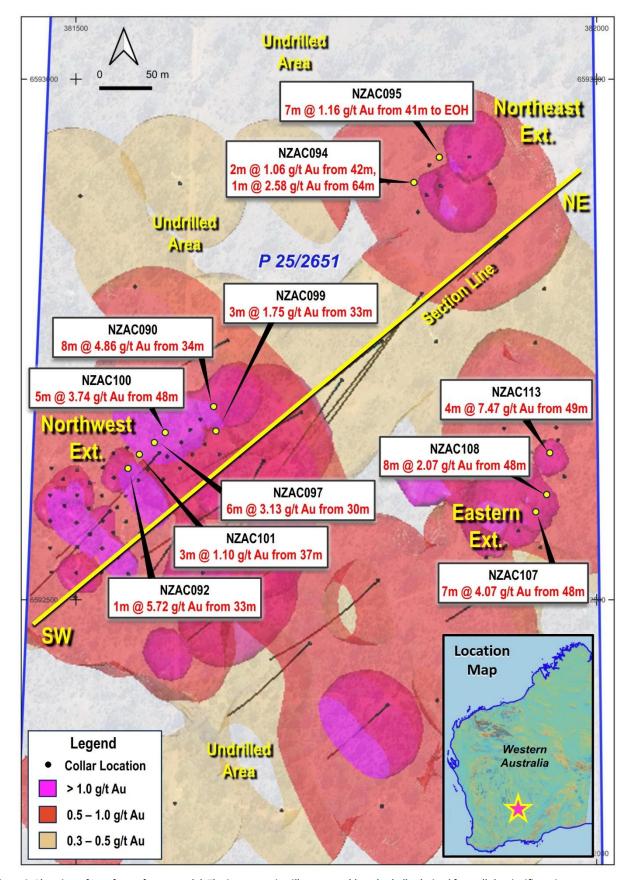


Figure 2: Plan view of Leapfrog software model. The interpretation illustrates gold grade shells, derived from all the significant intercepts reported to the ASX to date. The figure illustrates the position of the cross-section in Figure 1 and the location of the significant intercepts reported from the most recent AC drilling program. There are multiple areas that remain undrilled as noted on the diagram, with mineralisation yet to be confirmed.

David Lenigas, Chairman of Riversgold, said: "As illustrated in the Leapfrog figures within this release, the mineralisation envelope and footprint continues to grow, with the 3-dimensional Leapfrog model being used to refine areas for the next round of drilling. The drilling which has been targeting higher grade shallow gold mineralisation, may lead to these areas being the future focus of reverse circulation and diamond drilling below the higher-grade oxide gold mineralisation, to expedite the Project towards a maiden Mineral Resource Estimate (MRE). We remain encouraged by the recent success of Black Cat's Myhree open pit operations¹ only 7km up the road from Northern Zone and we are assessing if similar operations can be achieved with Northern Zone after we convert the tenement to a Mining Lease."

Riversgold Limited (ASX: RGL, Riversgold or **the Company)** is pleased to announce the Leapfrog modelling results that are guiding exploration and drilling programs at the Northern Zone Intrusive Hosted Gold Project, located 25km east-south-east of the Kalgoorlie Super Pit in Western Australia (refer to **Figure 3** for location).

Significant intercepts from the 26 aircore (AC) drill hole program included:

•	8m at 4.86 g/t Au from 34m	(NZAC090)
•	1m at 5.72 g/t Au from 33m	(NZAC092)
•	2m at 1.06 g/t Au from 42m	(NZAC094)
•	1m at 2.58 g/t Au from 64m	(NZAC094)
•	7m at 1.16 g/t Au from 41m to EOH	(NZAC095)
	6m at 3.13 g/t Au from 30m	(NZAC097)
•	3m at 1.75 g/t Au from 33m	(NZAC099)
	5m at 3.74 g/t Au from 31m	(NZAC100)
•	7m at 4.07 g/t Au from 48m	(NZAC107)
•	8m at 2.07 g/t Au from 48m	(NZAC108)
•	1m at 1.84 g/t Au from 48m	(NZAC112)
•	4m at 7.47 g/t Au from 49m	(NZAC113)

The AC holes were drilled using a blade to drilling refusal. The cuttings were logged by RGL geologists, and both the detailed logging and assays continue to show that a significant gold mineralisation event has taken place within the Project area (refer Appendix 1 for all drill data information and significant intercepts, Tables 1, 2 and 3).

The Leapfrog Figures 1 and 2 show the mineralisation envelope and footprint continues to grow, with the 3-dimensional Leapfrog model being used to refine areas for the next round of drilling. The drilling, which has been targeting higher grade shallow gold mineralisation, may lead to these areas being the future focus of reverse circulation and diamond drilling below the higher-grade oxide gold mineralisation. Gold mineralisation remains open in multiple directions and will require further modelling and drill testing as the Project matures. We will continue to further our understanding of the Project before proceeding with a maiden Mineral Resource Estimate (MRE).

Possible ore processing scenarios have been demonstrated by the recent success of Black Cat Syndicate Ltd via their use of a turn-key funding, development and processing package at their Myhree/Boundary open pits, that are located 7km to the North of the Northern Zone Project.

Conceptually, the Company draws parallels between Northern Zone and Saturn Metals' Apollo Hill Project, discerning similarities based on the PEA statement released by Saturn Metals (ASX 17 August 2023), which suggests the potential for a sizeable low-grade heap leach operation.

¹ BC8 ASX announcement 11 November 2024 "Kal East – 4,100oz Mined & Counting"

Saturn Metals Limited has released a Preliminary Economic Assessment (PEA) on the Apollo Hill Gold Project which is located 175km due north of Northern Zone. With a resource estimate of 105Mt at 0.54g/t gold, totalling 1.839Moz², this development serves as a benchmark for our aspirations at Northern Zone, albeit with the potential for Northern Zone to be an even larger project.

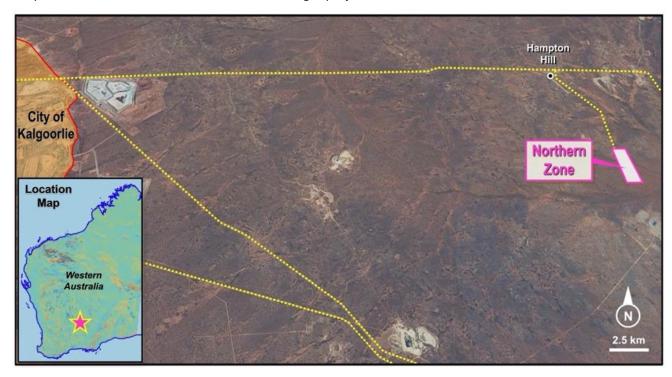


Figure 3: Northern Zone Project Map showing proximity to the Kalgoorlie "Super Pit".

-ENDS-

This announcement has been authorised for release by the Board of Riversgold Ltd.

For further information, please contact:

David Lenigas Ed Mead **Executive Chairman** Director

P: +44 (0) 7881825378 P: 0407 445351

E: dlenigas@riversgold.com.au E: emead@riversgold.com.au

Competent Person's Statement:

The information in this report that relates to exploration results and exploration targets is based on information compiled by Mr Edward Mead, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Mead is a director of Riversgold Ltd and a consultant to the company through Doraleda Pty Ltd. Mr Mead has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Mead consents to the inclusion of this information in the form and context in which it appears in this report.

² STN ASX announcement 17 August 2023 "Updated Preliminary Economic Assessment".

APPENDIX 1: Drilling Information

Table 1: Northern Zone Significant Intercepts

Hole ID	From (m)	To (m)	Width (m)	Au g/t	Intercept
NZAC091	48	54	6	0.59	6m @ 0.59 g/t Au from 28m, NZAC091
NZAC091	35	36	1	0.79	1m @ 0.79 g/t Au from 35m, NZAC091
NZAC087	32	36	4	0.65	4m @ 0.65 g/t Au from 32m, NZAC087
NZAC086	33	35	2	0.97	2m @ 0.97 g/t Au from 33m, NZAC086
NZAC086	54	55	1	5.48	1m @ 5.48 g/t Au from 54m (EOH), NZAC086
NZAC092	51	52	1	5.72	1m @ 5.72 g/t Au from 33m, NZAC092
NZAC101	37	40	3	1.1	3m @ 1.10 g/t Au from 37m, NZAC101
including	37	38	1	2.29	including 1m @ 2.29 g/t Au from 37m
NZAC097	30	36	6	3.13	6m @ 3.13 g/t Au from 30m, NZAC097
including	33	35	2	7.39	including 2m @ 7.39 g/t Au from 33m
including	34	35	1	10.41	including 1m @ 10.41 g/t Au from 34m
NZAC089	32	35	3	0.89	3m @ 0.89 g/t Au from 32m, NZAC089
including	32	33	1	1.22	including 1m @ 1.22 g/t Au from 32m
NZAC100	31	36	5	3.74	5m @ 3.74 g/t Au from 31m, NZAC100
NZAC099	33	36	3	1.75	3m @ 1.75 g/t Au from 33m, NZAC099
NZAC098	35	43	8	0.77	8m @ 0.77 g/t Au from 35m, NZAC098
including	35	37	2	1.55	including 2m @ 1.55 g/t Au from 35m
NZAC103	34	35	1	1.04	1m @ 1.04 g/t Au from 34m, NZAC103
NZAC102	29	36	7	0.56	7m @ 0.56 g/t Au from 29m, NZAC102
NZAC088	28	30	2	1.05	2m @ 1.05 g/t Au from 28m, NZAC088
including	28	29	1	1.49	including 1m @ 1.49 g/t Au from 28m
NZAC088	35	38	3	0.96	3m @ 0.96 g/t Au from 35m, NZAC088
including	36	37	1	1.33	including 1m @ 1.33 g/t Au from 36m
NZAC090	28	29	1	1.04	1m @ 1.04 g/t Au from 28m, NZAC090
NZAC090	34	42	8	5.09	8m @ 4.86 g/t Au from 34m, NZAC090
including	34	38	4	5.09	including 4m @ 5.09 g/t Au from 34m
including	36	37	1	18.22	including 1m @ 18.22 g/t Au from 36m
including	40	41	1	17.96	including 1m @ 17.96 g/t Au from 40m
NZAC107	48	55	7	4.07	7m @ 4.07 g/t Au from 48m, NZAC107
including	48	52	4	6.72	Including 4m @ 6.72 g/t Au from 48m
NZAC108	48	56	8	2.07	8m @ 2.07 g/t Au from 48m, NZAC108
including	51	55	4	8.72	Including 4m @ 3.46 g/t Au from 51m
NZAC113	49	53	4	7.47	4m @ 7.47 g/t Au from 49m, NZAC113
including	51	53	2	12.36	including 2m @ 12.36 g/t Au from 51m
NZAC112	48	49	1	1.84	1m @ 1.84 g/t Au from 48m, NZAC112
NZAC094	42	44	2	1.06	2m @ 1.06 g/t Au from 42m, NZAC094
NZAC094	64	65	1	2.58	1m @ 2.58 g/t Au from 64m, NZAC094
NZAC095	41	48	7	1.16	7m @ 1.16 g/t Au from 41m to EOH, NZAC095
including	41	42	1	4.13	including 1m @ 4.13 g/t Au from 41m)
including	41	45	4	1.5	including 4m @ 1.5 g/t Au from 41m

Table 2: Northern Zone Aircore Drill Collar Locations and information in GDA Zone 51J

Hole_ID	East	North	Depth	Dip	Elevation	Azimuth
NZAC086	381535	6592617	55	-90	357	0
NZAC087	381584	6592615	51	-90	357	0
NZAC088	381620	6592673	51	-90	357	0
NZAC089	381569	6592625	49	-90	357	0
NZAC090	381633	6592685	58	-90	357	0
NZAC091	381600	6592626	51	-90	357	0
NZAC092	381550	6592625	51	-90	357	0
NZAC093	381840	6592918	73	-90	357	0

Hole_ID	East	North	Depth	Dip	Elevation	Azimuth
NZAC094	381825	6592902	75	-90	357	0
NZAC095	381850	6592925	48	-90	357	0
NZAC096	381535	6592640	51	-90	357	0
NZAC097	381575	6592650	55	-90	357	0
NZAC098	381624	6592649	72	-90	357	0
NZAC099	381635	6592661	64	-90	357	0
NZAC100	381587	6592660	55	-90	357	0
NZAC101	381560	6592639	50	-90	357	0
NZAC102	381612	6592639	73	-90	357	0
NZAC103	381638	6592639	61	-90	357	0
NZAC104	381657	6592638	61	-90	357	0
NZAC107	381942	6592584	59	-90	357	0
NZAC108	381952	6592600	65	-90	357	0
NZAC109	381970	6592618	63	-90	357	0
NZAC110	381913	6592636	57	-90	357	0
NZAC111	381923	6592655	59	-90	357	0
NZAC112	381964	6592653	68	-90	357	0
NZAC113	381957	6592640	69	-90	357	0

Table 3: Northern Zone Aircore Results at > 0.3 g/t Au Grade Cutoff

Hole ID	From (m)	To (m)	Width (m)	Au Grade (g/t)
NZAC086	33	34	1	1.44
NZAC086	34	35	1	0.49
NZAC086	53	54	1	0.42
NZAC086	54	55	1	5.48
NZAC087	32	33	1	1.21
NZAC087	33	34	1	0.5
NZAC087	34	35	1	0.56
NZAC087	35	36	1	0.33
NZAC088	28	29	1	1.49
NZAC088	29	30	1	0.6
NZAC088	35	36	1	0.94
NZAC088	36	37	1	1.33
NZAC088	37	38	1	0.62
NZAC089	32	33	1	1.22
NZAC089	33	34	1	0.84
NZAC089	34	35	1	0.61
NZAC089	38	39	1	0.31
NZAC090	28	29	1	1.04
NZAC090	34	35	1	1.04
NZAC090	36	37	1	18.22
NZAC090	37	38	1	0.83
NZAC090	40	41	1	17.96
NZAC090	41	42	1	0.35
NZAC091	28	29	1	0.34
NZAC091	30	31	1	0.33
NZAC091	31	32	1	0.98
NZAC091	32	33	1	1.1
NZAC091	33	34	1	0.53
NZAC091	35	36	1	0.79
NZAC092	33	34	1	5.72
NZAC093	40	41	1	0.3
NZAC093	56	57	1	0.88
NZAC093	64	65	1	0.33

Hole ID	From (m)	To (m)	Width (m)	Au Grade (g/t)
NZAC093	65	66	1	0.94
NZAC094	42	43	1	1.56
NZAC094	43	44	1	0.55
NZAC094	46	47	1	0.98
NZAC094	56	57	1	0.78
NZAC094	64	65	1	2.58
NZAC095	35	36	1	0.35
NZAC095	36	37	1	0.4
NZAC095	41	42	1	4.13
NZAC095	43	44	1	0.5
NZAC095	44	45	1	1.45
NZAC095	47	48	1	1.89
NZAC097	30	31	1	1.62
NZAC097	31	32	1	0.64
NZAC097	32	33	1	1.14
NZAC097	33	34	1	4.36
NZAC097	34	35	1	10.41
NZAC097	35	36	1	0.62
NZAC097	37	38	1	0.62
NZAC097	27	28	1	0.4
NZAC098	35	36	1	1.3
NZAC098	36	37	1	1.8
NZAC098	38	39	1	0.55
NZAC098	39	40	1	0.86
NZAC098	41	42	1	0.76
NZAC098	42	43	1	0.32
NZAC099	25	26	1	0.35
NZAC099	27	28	1	0.34
NZAC099	33	34	1	1
NZAC099	34	35	1	3.13
NZAC099	35	36	1	1.13
NZAC099	36	37	1	0.35
NZAC099	37	38	1	0.34
NZAC100	31	32	1	4.74
NZAC100	32	33	1	3.36
NZAC100	33	34	1	4.08
NZAC100	34	35	1	3.34
NZAC100	35	36	1	3.16
NZAC100	36	37	1	0.41
NZAC101	37	38	1	2.29
NZAC101	38	39	1	0.61
NZAC101	39	40	1	0.39
NZAC102	26	27	1	0.38
NZAC102	29	30	1	0.5
NZAC102	30	31	1	0.72
NZAC102	31	32	1	0.47
NZAC102	32	33	1	0.65
NZAC102	34	35	1	0.77
NZAC102	35	36	1	0.54
NZAC103	30	31	1	0.39
NZAC103	32	33	1	0.42
NZAC103	34	35	1	1.04
NZAC103 NZAC104	34	35		0.39
			1	
NZAC104	44	45	1	0.4
NZAC107	48	49	1	3.6

Hole ID	From (m)	To (m)	Width (m)	Au Grade (g/t)
NZAC107	49	50	1	1.91
NZAC107	50	51	1	18.31
NZAC107	51	52	1	3.05
NZAC107	53	54	1	0.73
NZAC107	54	55	1	0.75
NZAC108	48	49	1	0.48
NZAC108	49	50	1	0.78
NZAC108	50	51	1	0.87
NZAC108	51	52	1	2.71
NZAC108	52	53	1	8.72
NZAC108	53	54	1	0.91
NZAC108	54	55	1	1.5
NZAC108	55	56	1	0.57
NZAC110	50	51	1	0.35
NZAC111	48	49	1	0.81
NZAC111	49	50	1	0.33
NZAC112	26	27	1	0.46
NZAC112	48	49	1	1.84
NZAC113	49	50	1	4.67
NZAC113	50	51	1	0.5
NZAC113	51	52	1	9.83
NZAC113	52	53	1	14.89

APPENDIX 2: JORC INFORMATION

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at Northern Zone.

Section 1: Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Every metre drilled was placed on the ground. 6m composites were collected using a scoop method of sampling the coarse reject sample for the first 24m. 1m sampling using a rifle splitter was trialed on the clays, from 24m, with sampling deemed to create a high degree risk of smearing. The clays are not wet, but have a damp characteristic. A large metal scoop was used to sample between 70-90% of material from each metre drilled, to total between 2-3kg samples. Standard reference material, sample duplicates and blanks, were undertaken at 25m sample intervals. Samples were sent to the laboratory for crushing, splitting and analysis. Analysis was undertaken by Jinnings laboratories (Kalgoorlie) for gold assay by 50g fire assay.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Australian Aircore Drilling completed the program using a blade to refusal.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Drill recovery was routinely recorded via estimation of the comparative percentage of the volume of the sample pile by the company geologist. The sample recovery was deemed excellent for representative assays, with consistent sample recovery and no loss though the top of the cyclone. The cyclone was cleaned or checked every 3m.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All holes have been geologically logged for lithology, mineralisation and weathering. As well as whether dry, damp or wet. Logging is quantitative for presence of quartz veins. All other logging is qualitative. All metre intervals from 24m to end of hole were chip trayed and photographed. A brief description of each drilling sample was recorded and a permanent record has been collected and stored in chip trays for reference.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	1m sampling using a rifle splitter was trialed on the clays, from 24m, with sampling deemed to create a high degree risk of smearing. The clays are not wet, but have a damp characteristic. A large metal scoop was used to sample between 70-90% of material from each metre drilled, to total between 2-3kg samples. Standard reference material, sample duplicates and blanks, were undertaken at 25m sample intervals. Samples were sent to the laboratory for crushing, splitting and analysis. The use of fire assay with 50g charge for all AC drilling provides a level of confidence in the assay database. The sampling and assaying are considered representative of the in-situ material. The sample size of 2-3 kilograms is appropriate and representative of the grain size and mineralisation style of the deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Jinnings (Kalgoorlie) were used for all analysis of drill samples submitted by Riversgold. The laboratory techniques below are for all samples submitted to Jinnings and are considered appropriate for the style of mineralisation defined within the Northern Zone Project area: Samples above 3Kg were riffle split. Pulverise to 95% passing 75 microns 50-gram Fire Assay (FA50A) – Au Duplicates, Standards and Blanks were used for external laboratory checks by RGL.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Intercepts and data were reviewed by 2 company personnel. No holes have been twinned. All primary data logged into excel and then uploaded and stored in Onedrive in the cloud. 3 company geologists have access to the data where we are able to individually validate and interrogate the data for accuracy, before it is loaded into Micromine, QGIS and Leapfrog. No data adjustments are made.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	The collar position of each hole has been marked out with a Garmin Inreach Explorer+ hand held GPS, and will be picked up by Spectrum Surveys (Kalgoorlie) using a DGPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The holes were drilled on a nominal Northeast-Southwest 25m spacing on traverses 15-20m apart.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The vertical drill holes were designed to test for supergene mineralisation or weathered primary ore zones and are believed to be unbiased based when interpretation is applied at modelling results.
Sample security	The measures taken to ensure sample security.	Company personnel sampled Aircore drill sample into calicos, placed calicos into green bags and then cable tied each green bag. The samples are then delivered to Jinnings Kalgoorlie at the end of each day, where they are submitted for assay.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data reviews will be conducted on completion of further drilling

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Northern Zone Project is comprised of one granted prospecting licence (P25/2651) which covers an area of 82 hectares, and is held in the name of Oracle Gold (WA) Pty Ltd. RGL are farming into the Tenement and have committed to spend \$600,000 in exploration expenditure on the tenement within the next two years. After Riversgold achieves 80% ownership, Oracle will be required to contribute pro-rata or dilute.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The majority of previous exploration in the area was by Northern Mining during 2007 to 2012 under the Blair North project, multiple small resource areas were identified at the George's Reward area to the south of P25/2651. Numerous gold intersections were recorded
Geology	Deposit type, geological setting and style of mineralisation.	The deposit is thought to be an Intrusion Related Gold System (IRGS) style of mineral deposit. Further drilling will better define the mineralisation style, and timing of the gold mineralisation event.

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Tables and Figures within the body of the release.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Intersections are weighted average grades based on a 0.25 g/t Au cut-off with unlimited waste zones but with a targeted grade of above 1.5g/t Au.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The diamond drilling program in 2023 confirmed the apparent widths of mineralisation as being perpendicular to foliation and veining. We believe the step out RC drilling to be the same as the diamond drilling. The true width of mineralisation is still to be fully ascertained. The Aircore drilling was vertical and not designed for true width, but was targeting supergene mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See body of the announcement for relevant diagrams and photos. Figure 1: Cross—section of 3D Leapfrog software model. The interpretation illustrates gold grade shells, derived from all the significant intercepts reported to the ASX to date. The model is constrained via a 25m buffer to all the RGL/Oracle drill hole traces that have been drilled at Northern Zone since 2021. Refer to Figure 2 Drill collar plan for the location of the section line. Figure 2: Plan view of Leapfrog software model. The interpretation illustrates gold grade shells, derived from all the significant intercepts reported to the ASX to date. The figure illustrates the position of the Cross-section in Figure 1, and the location of the significant intercepts reported from the most recent AC drilling program. There are multiple areas that remain undrilled as noted on the diagram, with mineralisation yet to be confirmed.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	See body of the announcement.

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Follow up phases of drilling to further test strike to be undertaken. Core from phase 1 to allow for further metallurgical studies.