

Canadian Copper Gold Discovery Update

High-Grade Samples Continue at Saint John, New Brunswick, Canada

Grades up to 7.38 % Cu, 2.38 g/t Au, 148 g/t Ag, 6.16 % Pb

Multiple High-Grade Antimony, Gold, Copper and Silver Rock Chip Assays Only 50km from USA Border

Riversgold Limited (ASX: RGL, Riversgold or **the Company**) is very pleased to announce that rock chip sampling is continuing at the Saint John copper, gold, copper, silver and antimony project (**the Project**), located in New Brunswick, Canada, with further results continuing to confirm the high-grade tenor of mineralisation over a significant footprint within the 101 square km approved tenement package.

Exploration on the ground is generally continuing through the Canadian winter, as Saint John is a near all-year-round exploration area.

All sampling to date from this new copper/gold/silver/lead/antimony discovery has been confined at this stage to very few limited surface outcrops in a circa 25km zone of felsic intrusions.

The Project is located immediately to the west of the city of Saint John (refer to **Figures 1-5** for prospect locations) and only 50km east of the US border. New Brunswick is an excellent mining jurisdiction.

Highlights At Prince of Wales Prospect, significant rock chip results from a quarry and roadside cutting include: 7.38% Cu, 2.38g/t Au , 148g/t Ag , 1.54% Pb (RGLSJ24_026) 109g/t Ag, 6.16% Pb (RGLSJ24 029) 6.23g/t Ag (RGLSJ24_064) 1.78g/t Ag (RGLSJ24_062) (RGLSJ24_027) 48.5g/t Ag At Hideaway, significant rock chip results include: (RGLSJ24_039) 1.43% Cu, 8.05g/t Ag 1.70g/t Au (RGLSJ24_022) 1.40g/t Au (RGLSJ24 020) At Little Lepreau Prospect, significant rock chip results from the roadside quarry include: 0.27% Cu, 0.15% Sb, 46.7g/t Ag (RGLSJ24_032)

- Multiple high-grade rock-chip results continue from the next stage of Saint John field work
- New Brunswick is a Tier-1 Canadian mining jurisdiction and noted for antimony production
- The Project covers 101km² west of Saint John in the Bay of Fundy
- Excellent infrastructure and access to the Project area
- Field work is ongoing, with further samples to be submitted for multi-element analyses

David Lenigas, Chairman of Riversgold, said: "Assays continue to confirm that the Saint John Project in New Brunswick, Canada, where multiple multi-metal targets are being defined over the ~25 km strike of the project area, is a significant discovery, in a previously unexplored area of Canada with excellent infrastructure so close to the US border. Easy access to project areas and favourable climate is being proven by continued on ground work which started again on January 3 after a break through the Christmas/New year holiday.

"The alteration and mineralisation viewed in the geology within the project area and the opportunities for the related IOCG and porphyry models that the Company is targeting makes Saint John a key project for Riversgold. As highlighted, the Project is ideally located for near year-round exploration - being only 5km from the city of Saint John and 50km from the USA border.

"I look forward to further updates from current site activities and the submission of further rock chip samples to ALS Laboratories at the nearby city of Moncton. We are processing data from a Drone Magnetic survey that was completed in mid-December over Little Lepreau, and the results of this are due in the coming days. Overall, a great start to 2025."

Figure 1: Prince of Wales roadside cutting with exposed mineralisation of assay results to date.

Significant assay results (**Appendix 1, Tables 1-3. Figures 1-5**) continue from outcrop samples collected from within the Project area at Hideaway, Little Lepreau and at Prince of Wales. Prince of Wales (**Figure 1**) continues to deliver results¹ from the roadside cutting exposure that include:

10.15% Cu, 65.8g/t Ag	(RK008302)
10.55% Cu, 9.5g/t Au, 477g/t Ag, 6.03% Pb	(RK008295)
7.38% Cu, 2.38g/t Au , 148g/t Ag , 1.54% Pb	(RGLSJ24_026)
5.85% Cu, 32.7g/t Ag	(RK008306)
 3.79% Cu, 0.76g/t Au, 1050g/t Ag 	(RK008297)
2.31% Cu, 1.54g/t Au, 181g/t Ag, 11.2% Pb	(RK008299)

 $^{^1\,}$ RGL ASX announcement 12 December 2024 "Significant New Canadian Copper Discovery"

 1.35% Cu, 11.4g/t Au (RK008 1.06% Cu, 77.8g/t Ag, 5.55% Pb (RK008 109g/t Ag, 6.16% Pb (RGLSJ2 48.5g/t Ag (RGLSJ2 6.23g/t Ag (RGLSJ2 	294)
 1.06% Cu, 77.8g/t Ag, 5.55% Pb (RK008 109g/t Ag, 6.16% Pb (RGLSJ2 48.5g/t Ag (RGLSJ2 6.23g/t Ag (RGLSJ2 	311)
 109g/t Ag, 6.16% Pb (RGLSJ2 48.5g/t Ag (RGLSJ2 6.23g/t Ag (RGLSJ2 	293)
48.5g/t Ag (RGLSJ2 6.23g/t Ag (RGLSJ2	24_029)
- 6.23g/t Ag (RGLSJ2	24_027)
	24_064)
1.78g/t Ag (RGLSJ2	24_062)

Multi-element assay results for 72 samples from reconnaissance rock chip sampling have now been reported for Hideaway, Little Lepreau and Prince of Wales. These results continue to validate and extend previous prospector activity and underpin preliminary mineralisation concepts.

Sampling resumed on 3 January with weather conditions still allowing the project area to be traversed and outcrop to be sampled.

Figure 2: Saint John Project location, illustrating the prospect locations, figure extents and RGL rock chip sample locations .

Figure 3: Prince Of Wales prospect location showing previous rock chip sampling locations and highlighting significant multi-element results.

Figure 4: Little Lepreau prospect location showing previous rock chip sampling locations and highlighting significant multi-element results.

Figure 5: Hideaway prospect location showing previous rock chip sampling locations and highlighting significant multi-element results.

-ENDS-

This announcement has been authorised for release by the Board of Riversgold Ltd.

For further information, please contact:

David Lei	nigas	Ed Me	Ed Mead							
Executive	e Chairman	Direct	or							
P:	+44 (0) 7881825378	Ρ:	0407 445351							
E:	dlenigas@riversgold.com.au	E:	emead@riversgold.com.au							

Competent Person's Statement:

The information in this report that relates to exploration results and exploration targets is based on information compiled by Mr Edward Mead, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Mead is a director of Riversgold Ltd and a consultant to the company through Doraleda Pty Ltd. Mr Mead has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Mead consents to the inclusion of this information in the form and context in which it appears in this report. Previous exploration results were reported in accordance with Listing Rule 5.7 on 9 October 2024 and 12 December 2024 and the Company confirms there have been no material changes.

APPENDIX 1: Rock Chip Location and Assay Results

Table 1: Significant Rock Chip results, Zone 19 Datum NAD83

Area	Sample ID	East	North	Cu %	Sb ppm	Au g/t	Ag g/t	Pb %
Hideaway	RGLSJ24_021	700541	5002788	0.00	0.00	1.4	0.00	0.00
Hideaway	RGLSJ24_022	700585	5002803	0.00	0.00	1.7	0.00	0.00
Hideaway	RGLSJ24 039	712392	5008217	1.43	0.00	0.14	8.05	0.00
Little Lepreau	RGLSJ24 032	712766	5008383	0.27	0.14	0.04	46.7	0.00
Prince of Wales	RGLSJ24_064	712642	5008327	0.00	0.00	0.08	6.23	0.02
Prince of Wales	RGLSJ24 062	700217	5001984	0.00	0.00	0.00	1.78	0.02
Prince of Wales	RGLSJ24 029	712642	5008327	0.63	0.02	0.37	109	6.16
Prince of Wales	RGLSJ24 027	712766	5008383	0.11	0.03	0.03	48.5	0.02
Prince of Wales		700532	5002746	7.38	0.05	2.38	148	1.54

Table 2: All Rock Chip Sample Locations

Sample ID	East	North	Area
RGLSJ24_001	718032	5009576	Five Fathom
RGLSJ24_002	718178	5009118	Five Fathom
RGLSJ24_003	722022	5012835	Crane Mountain
RGLSJ24_004	721976	5012899	Crane Mountain
RGLSJ24_005	722123	5013320	Crane Mountain
RGLSJ24_006	722262	5013493	Crane Mountain
RGLSJ24_007	722427	5013749	Crane Mountain
RGLSJ24_008	719668	5015338	Crane Mountain
RGLSJ24_009	718989	5015699	Crane Mountain
RGLSJ24_010	718985	5015781	Crane Mountain
RGLSJ24_011	716878	5013186	Crane Mountain
RGLSJ24_012	716597	5013857	Crane Mountain
RGLSJ24_013	713861	5013565	Crane Mountain
RGLSJ24_014	715712	5011117	Five Fathom
RGLSJ24_015	714251	5011261	Five Fathom
RGLSJ24_016	714651	5011114	Five Fathom
RGLSJ24_017	714687	5011003	Five Fathom
RGLSJ24_018	700947	5008020	Hideaway
RGLSJ24_019	700737	5007952	Hideaway
RGLSJ24_020	702644	5007433	Hideaway
RGLSJ24_021	702641	5007431	Hideaway
RGLSJ24_022	699813	5007355	Hideaway
RGLSJ24_023	699796	5007340	Hideaway
RGLSJ24_024	704481	5006975	Musquash
RGLSJ24_025	705648	5006462	Musquash
RGLSJ24_026	713694	5009213	Prince of Wales
RGLSJ24_027	713285	5008893	Prince of Wales
RGLSJ24_028	713045	5008629	Prince of Wales
RGLSJ24_029	712768	5008386	Prince of Wales
RGLSJ24_030	715330	5008549	Prince of Wales
RGLSJ24_031	714868	5009175	Prince of Wales
RGLSJ24_032	700543	5002785	Little Lepreau
RGLSJ24_033	700335	5002528	Little Lepreau
RGLSJ24_034	700146	5002611	Little Lepreau
RGLSJ24_035	698741	5006661	Hideaway
RGL3J24_030	609750	5006489	Hidoowov
RGL5J24_037	698750	5006753	Hideaway
RGL3J24_038	600062	5006752	Hidoaway
PGI SI24_039	71//20	5000550	Prince of Wales
RGI SI24_040	714400	5008347	Prince of Wales
RGI SI24_041	71/5/0	5008415	Prince of Wales
RGI SI24_042	71/030	5008537	Prince of Wales
RGI SI24_043	701352	5004166	
RGI SI24_044	701475	5003903	Little Lepreau
RGI SI24_045	712502	5003303	
NGL3J24_040	112392	2009209	FILLE OF Wales

Sample ID	East	North	Area				
RGLSJ24_047	712616	5008369	Prince of Wales				
RGLSJ24_048	712407	5008414	Prince of Wales				
RGLSJ24_049	712009	5008414	Prince of Wales				
RGLSJ24_050	711373	5008141	Prince of Wales				
RGLSJ24_051	711373	5008135	Prince of Wales				
RGLSJ24_052	708616	5006798	Musquash				
RGLSJ24_053	708882	5007160	Musquash				
RGLSJ24_054	705732	5006559	Musquash				
RGLSJ24_055	704217	5004194	Little Lepreau				
RGLSJ24_056	700946	5005577	Hideaway				
RGLSJ24_057	700221	5007544	Hideaway				
RGLSJ24_058	700411	5007671	Hideaway				
RGLSJ24_059	699780	5007718	Hideaway				
RGLSJ24_060	699805	5007705	Hideaway				
RGLSJ24_061	712292	5008205	Prince of Wales				
RGLSJ24_062	712292	5008193	Prince of Wales				
RGLSJ24_063	712393	5008249	Prince of Wales				
RGLSJ24_064	712016	5008758	Prince of Wales				
RGLSJ24_065	711547	5008837	Prince of Wales				
RGLSJ24_066	711526	5008938	Prince of Wales				
RGLSJ24_067	711523	5008959	Prince of Wales				
RGLSJ24_068	711526	5008958	Prince of Wales				
RGLSJ24_069	711528	5008964	Prince of Wales				
RGLSJ24_070	711428	5008982	Prince of Wales				
RGLSJ24_071	711595	5009125	Prince of Wales				
RGLS124 072	715254	5008611	Five Fathom				

Table 3: All Rock Chip assay results in ppm unless stated as %, Zone 19 Datum NAD83

Sample ID	As	Au	Bi	Cd	Fe (%)	Hg	Мо	Р	Pb	Re	S (%)	Sb	Se	Sn	Те	Ti (%)	w	Zn	Ag	Cu
RGLSJ24_001	0.6	0.005	0.06	0.01	2.29	0.005	0.68	460	2.2	0.005	0.02	0.05	0.005	0.5	0.01	0.181	0.11	37	0.04	22.3
RGLSJ24_002	1.5	0.005	0.07	0.05	2.55	0.005	1.29	420	8.1	0.005	0.02	0.16	0.005	0.2	0.05	0.23	0.21	36	0.04	42.9
RGLSJ24_003	0.8	0.005	0.08	0.01	1.21	0.005	1.1	590	2	0.005	0.01	0.05	0.005	0.2	0.005	0.04	0.06	20	0.005	3
RGLSJ24_004	0.9	0.005	0.11	0.03	2.81	0.005	0.52	960	2	0.005	0.01	0.1	0.2	1.3	0.01	0.204	0.19	101	0.01	27.4
RGLSJ24_005	0.8	0.005	0.21	0.02	4.04	0.005	0.22	470	2.2	0.005	0.01	0.15	0.005	1.2	0.02	0.281	0.13	92	0.02	19.2
RGLSJ24_006	3.1	0.005	0.03	0.06	5.92	0.005	0.62	1070	3.4	0.001	0.19	0.1	0.3	0.6	0.005	0.545	0.005	79	0.03	50.7
RGLSJ24_007	1.1	0.005	0.09	0.04	3.42	0.005	0.15	480	1.6	0.005	0.07	0.25	0.2	0.3	0.005	0.227	0.22	44	0.02	50.1
RGLSJ24_008	94.4	0.005	0.12	0.01	1.39	0.005	2.27	150	2.7	0.005	0.18	3.6	0.005	0.2	0.01	0.02	0.08	9	0.03	12.1
RGLSJ24_009	38.4	0.01	0.95	0.005	4.36	0.005	0.28	340	7.5	0.005	0.96	1.44	1.2	1.2	0.61	0.048	0.42	29	0.19	4.6
RGLSJ24_010	4.8	0.005	0.03	0.03	1.25	0.005	0.06	300	1.2	0.005	0.005	0.63	0.4	1.4	0.01	0.04	0.41	31	0.01	1.6
RGLSJ24_011	1.2	0.005	0.14	0.04	3.14	0.005	0.26	490	6.1	0.005	0.02	0.1	0.005	1.6	0.03	0.283	0.43	71	0.03	22.6
RGLSJ24_012	5.3	0.005	0.04	0.07	3.55	0.005	0.19	570	8.9	0.005	0.02	0.29	0.005	0.4	0.01	0.179	0.14	77	0.01	10.6
RGLSJ24_013	0.7	0.005	0.04	0.04	2.15	0.005	0.41	530	3.3	0.005	0.01	0.06	0.005	0.3	0.005	0.157	0.28	31	0.02	15.8
RGLSJ24_014	0.9	0.005	0.07	0.13	2.95	0.005	0.17	490	3.8	0.005	0.01	0.33	0.005	0.005	0.01	0.005	0.005	66	0.02	3.2
RGLSJ24_015	0.8	0.005	0.02	0.03	3.36	0.005	0.28	380	1.8	0.005	0.01	0.05	0.005	0.3	0.005	0.213	0.11	47	0.01	9.5
RGLSJ24_016	1.6	0.005	0.02	0.07	1.45	0.005	0.46	370	17.7	0.005	0.01	0.44	0.005	0.4	0.005	0.143	0.09	4	0.01	2.2
RGLSJ24_017	1.7	0.025	0.47	0.06	1.77	0.005	4.57	130	48.7	0.001	0.2	0.52	0.3	0.3	0.74	0.1	0.12	25	0.97	46.2
RGLSJ24_018	2.42	0.3	0.34	0.01	3.88	0.005	1.8	350	6.9	0.001	0.1	0.005	0.3	0.7	0.15	0.161	0.21	4	0.005	25.2
RGLSJ24_019	1.29	0.5	0.32	0.03	2.14	0.005	4.11	360	3.3	0.003	0.02	0.005	0.005	0.4	0.13	0.083	0.22	5	0.005	8.8
RGLSJ24_020	0.11	0.005	0.05	0.51	0.24	0.02	0.11	70	19.3	0.005	0.01	0.005	0.4	0.005	0.01	0.005	0.005	21	0.005	6.6

ASX: RGL Announcement 7 January 2025

Sample ID	As	Au	Bi	Cd	Fe (%)	Hg	Мо	Р	Pb	Re	S (%)	Sb	Se	Sn	Те	Ti (%)	w	Zn	Ag	Cu
RGLSJ24_021	1.38	1.4	0.02	0.06	2.47	0.005	0.27	400	3.8	0.001	0.005	0.005	0.005	0.4	0.01	0.181	0.08	44	0.005	23.2
RGLSJ24_022	0.56	1.7	1.53	0.06	3.19	0.01	3.9	530	34.2	0.005	1.36	0.19	1.5	1.3	0.4	0.046	0.89	39	0.005	6.1
RGLSJ24_023	0.7	0.4	0.5	0.07	1.81	0.005	1.63	550	78.9	0.001	0.65	0.005	0.5	2	0.2	0.108	0.5	75	0.005	17.2
RGLSJ24_024	0.35	0.3	0.02	0.18	1.54	0.005	0.65	350	2.7	0.005	0.005	0.18	0.005	0.005	0.005	0.005	0.07	34	0.005	3.3
RGLSJ24_025	0.35	0.1	0.08	0.14	0.67	0.02	6.44	260	125	0.004	0.3	0.005	0.8	0.005	0.04	0.005	0.05	14	0.005	17.8
RGLSJ24_026	17.6	2.38	52.8	6.79	7.26	1.55	4.34	20	15400	0.005	4.38	453	5.7	0.005	2.24	0.005	0.32	112	148	73800
RGLSJ24_027	6.5	0.026	1.76	3.49	0.96	0.32	3	20	170.5	0.005	0.11	257	0.3	0.005	0.03	0.005	0.11	79	48.5	1080
RGLSJ24_028	1.7	0.005	0.14	0.22	3.66	0.005	2.34	100	19.2	0.005	0.02	1.15	0.5	0.005	0.01	0.005	0.11	39	0.29	58
RGLSJ24_029	22.9	0.373	124	7.45	1.24	0.39	3.81	50	61600	0.001	1.7	242	31.5	0.005	2.5	0.005	0.14	93	109	6330
RGLSJ24_030	6	0.005	0.13	0.38	4.42	0.005	1.4	40	73.8	0.005	0.005	0.4	0.5	0.005	0.005	0.005	0.08	71	0.17	16.2
RGLSJ24_031	1.1	0.005	0.12	0.03	13.15	0.005	0.92	50	59.6	0.001	0.02	0.77	0.005	0.3	0.005	0.031	73	4	0.12	24.7
RGLSJ24_032	155	0.043	57.3	14.9	4.35	9.24	3.55	90	37.3	0.004	1.06	1435	2.2	0.005	0.89	0.005	0.11	545	46.7	2740
RGLSJ24_033	1.2	0.005	0.2	0.14	4.27	0.02	0.66	510	3.2	0.001	0.005	4.1	0.2	0.2	0.01	0.02	0.005	79	0.07	58.8
RGLSJ24_034	4.3	0.005	1.61	0.04	4	0.02	1.3	380	10.6	0.001	0.59	1.55	0.5	0.5	0.39	0.242	0.46	43	0.25	18.2
RGLSJ24_035	0.5	0.005	0.21	0.04	1.28	0.01	2.12	110	3.8	0.001	0.34	0.13	0.2	0.2	0.08	0.03	0.15	16	0.06	4.9
RGLSJ24_036	0.6	0.005	0.12	0.63	1.86	0.01	2.55	290	50.3	0.001	0.05	0.25	0.005	0.3	0.06	0.094	0.67	97	0.12	16.4
RGLSJ24_037	0.8	0.005	1.38	0.03	0.7	0.09	3.68	410	8.3	0.005	0.02	0.07	0.005	0.6	0.12	0.043	290	8	0.05	2.1
RGLSJ24_038	0.2	0.005	0.02	0.01	0.53	0.005	2.72	20	3.7	0.001	0.02	0.13	0.005	0.3	0.005	0.016	0.46	6	0.01	0.8
RGLSJ24_039	1.6	0.139	12.05	0.005	3.93	0.005	2120	140	12.9	3.8	1.22	0.13	6.7	2.2	4.43	0.089	0.88	47	8.05	14300
RGLSJ24_040	0.8	0.005	0.03	0.21	1.32	0.005	0.93	280	33.3	0.005	0.04	0.35	0.005	0.005	0.005	0.005	0.33	37	0.08	18.2
RGLSJ24_041	0.7	0.005	0.05	0.17	1.68	0.005	1.22	220	22.4	0.005	0.08	0.42	0.005	0.005	0.01	0.005	0.12	39	0.05	8.4
RGLSJ24_042	0.9	0.005	0.03	0.15	3.11	0.005	2.7	60	23.9	0.005	0.07	0.27	0.005	0.005	0.02	0.005	0.005	89	0.03	6.8

ASX: RGL Announcement 7 January 2025

Sample ID	As	Au	Ві	Cd	Fe (%)	Hg	Мо	Р	Pb	Re	S (%)	Sb	Se	Sn	Те	Ti (%)	w	Zn	Ag	Cu
RGLSJ24_043	2.6	0.005	0.17	0.04	8.49	0.005	1.08	4220	53.4	0.007	0.08	0.33	0.2	1.5	0.005	0.351	0.27	171	0.06	20.7
RGLSJ24_044	1.3	0.02	0.03	0.03	3.06	0.005	2.99	120	7.5	0.003	0.02	0.25	0.005	0.4	0.02	0.116	0.12	8	0.02	16
RGLSJ24_045	0.2	0.005	0.31	0.02	0.34	0.005	4.72	10	3.5	0.005	0.01	0.1	0.005	0.2	0.01	0.005	0.29	2	0.02	26.4
RGLSJ24_046	0.6	0.005	0.08	0.03	4.15	0.005	0.58	680	5.7	0.001	0.09	0.14	0.005	0.3	0.03	0.198	0.2	78	0.02	13.5
RGLSJ24_047	0.9	0.005	0.09	0.41	2.61	0.005	0.75	410	202	0.001	0.09	1.56	0.2	0.2	0.005	0.053	0.21	69	0.25	39.8
RGLSJ24_048	0.1	0.005	0.05	0.09	1.32	0.01	1.06	180	11.2	0.001	0.06	0.15	0.2	0.005	0.01	0.005	0.005	27	0.02	2.3
RGLSJ24_049	0.6	0.005	0.06	0.12	3.68	0.005	0.75	530	35.6	0.001	0.01	2.76	0.005	0.005	0.01	0.007	0.005	55	0.27	61.8
RGLSJ24_050	0.7	0.005	0.09	0.05	0.74	0.005	1.29	30	21.1	0.001	0.01	0.7	0.005	0.005	0.01	0.005	0.08	14	0.12	9.4
RGLSJ24_051	0.7	0.005	0.06	0.02	3.04	0.005	0.49	570	13.7	0.001	0.03	0.14	0.2	0.2	0.03	0.136	0.24	38	0.06	103.5
RGLSJ24_052	0.9	0.005	0.05	0.01	6.2	0.005	0.16	690	3.7	0.005	0.01	0.11	0.6	0.4	0.02	0.263	0.3	146	0.05	182.5
RGLSJ24_053	0.005	0.005	0.05	1.56	0.17	0.01	0.1	30	10.7	0.005	0.02	0.35	0.5	0.005	0.01	0.005	0.005	13	0.02	3.5
RGLSJ24_054	0.7	0.005	0.06	0.03	2.16	0.005	0.36	460	3.2	0.001	0.01	0.32	0.005	0.4	0.005	0.142	0.18	67	0.02	5.7
RGLSJ24_055	0.3	0.005	0.02	0.02	0.76	0.005	0.72	110	2.1	0.001	0.01	0.07	0.005	0.3	0.005	0.044	0.1	13	0.01	6.7
RGLSJ24_056	1	0.005	0.21	0.03	1.37	0.005	1.59	150	6.5	0.001	0.01	0.12	0.005	0.4	0.01	0.005	0.005	35	0.03	3
RGLSJ24_057	1	0.005	0.04	0.26	2.96	0.005	0.37	390	72.4	0.005	0.02	0.06	0.2	0.4	0.005	0.159	0.11	38	0.06	68.3
RGLSJ24_058	0.3	0.005	0.88	0.65	4.04	0.005	9.2	390	70.6	0.001	0.04	0.005	0.4	1.2	0.32	0.228	0.36	325	0.23	22.7
RGLSJ24_059	0.3	0.005	2.03	0.06	2.22	0.005	11.15	510	17	0.003	0.03	0.005	0.005	1.1	1.12	0.122	0.45	90	0.08	37.3
RGLSJ24_060	1.4	0.005	1.74	0.15	0.98	0.01	2.66	80	63.4	0.001	0.01	0.14	0.005	0.4	0.02	0.025	0.17	37	0.22	19.7
RGLSJ24_061	0.005	0.005	0.27	0.14	2.03	0.005	1.73	360	7.6	0.001	0.06	0.005	0.005	0.5	0.02	0.162	0.41	72	0.08	10.3
RGLSJ24_062	1.7	0.005	4.96	0.08	2.23	0.005	1.26	460	157.5	0.001	0.02	0.19	0.2	0.8	0.24	0.258	0.12	38	1.78	50.9
RGLSJ24_063	0.1	0.005	0.05	0.03	0.37	0.005	0.37	170	3.5	0.005	0.01	0.005	0.005	0.005	0.005	0.019	0.1	11	0.02	1.8
RGLSJ24_064	8.5	0.083	24	0.15	5.93	0.01	15	510	162.5	0.002	2.26	1	2.9	0.9	2.39	0.217	1.61	82	6.23	80.7

ASX: RGL Announcement 7 January 2025

		-												-						
Sample ID	As	Au	Ві	Cd	Fe (%)	Hg	Мо	Р	Pb	Re	S (%)	Sb	Se	Sn	Те	Ti (%)	w	Zn	Ag	Cu
RGLSJ24_065	0.3	0.005	0.11	0.02	0.77	0.005	1.12	60	4.9	0.001	0.02	0.11	0.2	0.5	0.02	0.041	0.18	9	0.03	9.9
RGLSJ24_066	1.6	0.007	0.25	0.03	2.35	0.01	0.72	430	34.4	0.001	0.24	0.23	0.4	0.5	0.29	0.176	0.27	44	0.18	6.9
RGLSJ24_067	0.9	0.005	0.03	0.01	2.69	0.005	0.77	440	10.4	0.002	0.41	0.21	0.6	0.4	0.01	0.11	0.23	30	0.03	28.3
RGLSJ24_068	0.9	0.005	0.05	0.01	2.47	0.005	0.7	470	13.5	0.001	0.23	0.14	0.3	0.3	0.02	0.096	0.15	27	0.05	39.6
RGLSJ24_069	0.7	0.005	0.05	0.01	2.61	0.005	0.71	400	4.8	0.001	0.58	0.08	0.6	0.2	0.02	0.082	0.18	26	0.06	33.7
RGLSJ24_070	1.1	0.005	0.06	0.01	2.84	0.01	0.76	380	15.2	0.001	0.27	0.19	0.9	0.3	0.02	0.127	0.28	17	0.06	30.9
RGLSJ24_071	1.2	0.005	0.01	0.15	3.86	0.005	0.43	620	120.5	0.005	0.01	0.31	0.2	0.4	0.005	0.26	0.11	207	0.03	48
RGLSJ24_072	1.2	0.005	0.02	0.03	1.61	0.005	0.47	430	4.5	0.001	0.01	0.37	0.005	0.4	0.005	0.141	0.14	29	0.28	65.7

APPENDIX 2: JORC INFORMATION

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at Saint Johns, New Brunswick, Canada.

Section 1: Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Rock chip sampling of outcrop or exposures from trenches, road quarry pits and excavations. Rock chip sampling across the lithologies, in a channel fashion, to obtain representative material was completed, with sample size of 1-4 kg.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling not being reported.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Drilling not being reported.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Rock chip samples were logged, with mineralisation and alteration described. Photos of samples and sample locations were taken.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	No Sub sampling undertaken.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Rock chip samples were submitted to ALS Global Laboratories in Moncton, New Brunswick, Canada, for analysis: Digest of Aqua Regia Finish of ICP-MS41 Au 50gm FA/AA finish Elements assayed for: Au, Ag, Al %, As, B, Ba, Be, Bi, Ca %, Cd, Ce, Co, Cr %, Cs, Cu, Fe %, Ga, Ge, Hf, Hg, In, K %, La, Li, Mg % Mn, Mo, Na, Nb, Ni, P %, Pb, Rb, Re, S %, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti %, Tl, U, V, W, Y, Zn, Zr,
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Intercepts were reviewed by 2 company personnel. No drilling being reported. Primary data recorded manually in field notebook, transferred to digital at night and stored in the RGL cloud server. Recent sampling has been completed using fulcrumapp. The Fulcrum field data collection and process management platform is digital and online.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Data points were located with handheld GPS in Lat Long and converted to Zone19 NAD83. Accuracy of data points +/-5metres Topographic control is considered adequate for the stage of the project.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Random spacing of samples based on exposure of fresh rock for sampling. Data not designed for, and is not suitable for an MRE. No sample compositing has been used.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not known at this stage of exploration.
Sample security	The measures taken to ensure sample security.	Samples were taken by RGL geologists, photographed and the location recorded. Samples were kept inside the vehicle and delivered to ALS in Muncton, New Brunswick.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No data reviews or audits

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Saint John Project is made up of 5 claims in the Saint John area of New Brunswick, Canada. Claims can be renewed every year by meeting expenditure commitments. Claim expenditure is calculated by units. Renew each mineral claim unit costs:
		 First to Fifth Renewals (per year) \$10.00 Sixth to Tenth Renewals (per year) \$20.00 Eleventh to Fifteenth Renewals (per year)
		\$30.00

E:info@riversgold.com.au

Criteria	JORC Code explanation	Commentary
		 Sixteenth and Successive Renewals (per year) \$50.00 The claims: 11488 Hideaway Lake held by Geoseacher inc. 101 units. Issue date 2024-09-25 \$10,100 expenditure to renew. 11489 Spruce Lake held by Geoseacher inc. 181 units. Issue date 2024-09-25 \$18,100 expenditure to renew. 10729 Little Lepreau held by Geoseacher inc. 57 units. Issue date 2025-03-19 \$17,100 expenditure to renew. 9106 Little Lepreau held by Robert Murray. 84 units. Issue date 2019-03-19 \$25,200 expenditure to renew. 10655 Little Lepreau held by Robert Murray. 32 units. Issue date 2019-03-19 \$9,600 expenditure to renew. All claims are in good standing. Annual Expenditure \$80,100. Mining licences are granted for 20 years, and can be renewed. The Company has signed an option agreement with Geosearcher Inc. and Mr Robert Murray to acquire 100% of the Saint John Project with the following key terms: Payment of C\$60,000 on execution of the Agreement, which has been paid. Four annual payments commencing on the first anniversary of the execution of the Agreement comprising C\$25,000 in cash plus C\$35,000 payable in cash or RGL shares (based on the 10 day VWAP prior to the anniversary date) at the Company's election. Following payment of the C\$300,000, the option is considered exercised and a 2% GSR becomes payable. 50% of the GSR. The Company has the ability to accelerate the payments in order to exercise the option earlier.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The majority of previous exploration in the area is rock chip results, which has been verified. There are 12 diamond drill holes at Musqaush, Scott Dam completed int eh 60's which are not verifiable. Some geochemical sampling has been done. The most recent work of Lidar, Magnetics and limited geochemical sampling is all of a good quality. Coppercliff Consolidated Mining Corp 1953, geochemical sampling. Mount Costigan Mines, 1962, Scotts Dam Prospect, Musquash. Report 470024. Geological
		mapping and geochemical samples. Merrill Island Mining Corp, 1968, Scotts Dam Prospect, Musquash. Report 470022. 12

Criteria	JORC Code explanation	Commentary
		 Diamond drill holes to a maximum depth of 404ft (123.14m). Mineralisation intercepted but assays not able to be verified Crystal Plastics Ltd, 1974 Vinegar Hill Prospect, Musquash, VLF-EM, magnetics and geochemical sampling. Brunswick Mining and Smelting Corporation Limited, 1984. Report 473116. Liberty Hill. Geochemical sampling. Falconcrest Resources Inc, 1986. Scott Falls, Musquash. Report 473366. Geochemical sampling. Geosearcher Inc, 2020. Little Lepreau. Rock chip samples. Brunswick Exploration Inc, 2022. Saint John. Lidar reprocessing, Geophysical reprocessing DIGHEM resistivity 900Hz, Geophysical reprocessing of Regional Airborne Magnetics Residual RTP, Rock chip. The below datasets are available and are being used by Riversgold over the Saint John Project Geological Survey of Canada VLF and aeromagnetic (1987) Geological Survey of Canada radiometric (1985/1986) Government of New Brunswick high sensitivity Aeromagnetic (2001) Noranda Exploration magnetic, VLF and EM (DIGEM) (1989) Government of New Brunswick Bouguer Gravity (Hassan compilation - 2000) Government of New Brunswick Lidar (2015-2018) Exploration Plans
Geology	Deposit type, geological setting and style of mineralisation.	The deposit is thought to be an IOCG and/or Porphyry. Further exploration is required to validate and advance the geological model to explain the mineralisation observed over such a large area.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drilling not being reported.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No data aggregation being used.

P:+61 (8) 6143 6747

E:info@riversgold.com.au

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No relationship between samples and mineralisation width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See body of the announcement for relevant diagrams and photos.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	See body of the announcement.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Continued sampling over the project. Drone Magnetic survey. Trenching. Geochemical sampling. Maiden drill program approved by